题目内容

1.求函数y=$\frac{sinx+1}{2sinx-1}$的值域.

分析 分离常数,借助三角函数的有界性求解.

解答 解:y=$\frac{sinx+1}{2sinx-1}$=$\frac{2(sinx+1)}{2(2sinx-1)}$=$\frac{1}{2}$+$\frac{3}{4sinx-2}$,
∵-1≤sinx≤1,
∴-6≤4sinx-2<0,或0<4sinx-2≤2,
∴$\frac{3}{4sinx-2}$≤-$\frac{1}{2}$,或$\frac{3}{4sinx-2}$≥$\frac{3}{2}$,
∴$\frac{1}{2}$+$\frac{3}{4sinx-2}$≤0,或$\frac{1}{2}$+$\frac{3}{4sinx-2}$≥2,
∴函数y=$\frac{sinx+1}{2sinx-1}$的值域为:(-∞,0]∪[2,+∞).

点评 本题考查三角函数的最值,考查正弦函数的有界性,考查转化与方程思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网