题目内容
函数f(x)=2x-
的定义域为(0,1](a为实数),
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(3)求函数y=f(x)在x∈(0,1]上的最大值及最小值,并求出函数取最值时x的值.
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(3)求函数y=f(x)在x∈(0,1]上的最大值及最小值,并求出函数取最值时x的值.
解:(1)显然函数y=f(x)的值域为
;
(2)若函数y=f(x)在定义域上是减函数,
则任取x1,x2∈(0,1]且x1<x2都有f(x1)>f(x2)成立,
即
,
只要a<-2x1x2即可,由x1,x2∈(0,1],
故-2x1x2∈(-2,0),所以a≤-2,
故a的取值范围是(-∞,-2]。
(3)当a≥0时,函数y=f(x)在(0,1]上单调减,无最小值,
当x=1时取得最大值2-a;
由(2)得当a≤-2时,函数y=f(x)在(0,1]上单调减,无最大值,
当x=1时取得最小值2-a;
当-2<a<0时,函数y=f(x)在
上单调减,在
上单调增,无最大值,
当
时,取得最小值
。
(2)若函数y=f(x)在定义域上是减函数,
则任取x1,x2∈(0,1]且x1<x2都有f(x1)>f(x2)成立,
即
只要a<-2x1x2即可,由x1,x2∈(0,1],
故-2x1x2∈(-2,0),所以a≤-2,
故a的取值范围是(-∞,-2]。
(3)当a≥0时,函数y=f(x)在(0,1]上单调减,无最小值,
当x=1时取得最大值2-a;
由(2)得当a≤-2时,函数y=f(x)在(0,1]上单调减,无最大值,
当x=1时取得最小值2-a;
当-2<a<0时,函数y=f(x)在
当
练习册系列答案
相关题目