ÌâÄ¿ÄÚÈÝ
15£®Ä³Ð£Êýѧ¿ÎÍâС×éÔÚ×ø±êÖ½ÉÏΪѧУµÄÒ»¿é¿ÕµØÉè¼ÆÖ²Ê÷·½°¸Îª£ºµÚK¿ÃÊ÷ÖÖÖ²ÔÚµãPk£¨xk£¬yk£©´¦£¬ÆäÖÐx1=1£¬y1=1£¬µ±K¡Ý2ʱ£¬$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[T£¨\frac{k-1}{5}£©-T£¨\frac{k-2}{5}£©]\\{y_k}={y_{k-1}}+T£¨\frac{k-1}{5}£©-T£¨\frac{k-2}{5}£©\end{array}\right.$T£¨a£©±íʾ·Ç¸ºÊµÊýaµÄÕûÊý²¿·Ö£¬ÀýÈçT£¨2.6£©=2£¬T£¨0.2£©=0£®°´´Ë·½°¸µÚ2016¿ÃÊ÷ÖÖÖ²µãµÄ×ø±êӦΪ£¨1£¬404£©£®·ÖÎö ¸ù¾Ý¹æÂÉÕÒ³öÖÖÖ²µãºá×ø±ê¼°×Ý×ø±êµÄͨʽ£¬½«n=2016¼´¿ÉÇóµÃÖÖÖ²µãµÄ×ø±ê£®
½â´ð ½â£º¡ßT[$\frac{k-1}{5}$]-T[$\frac{k-2}{5}$]×é³ÉµÄÊýÁÐΪ£º
1£¬0£¬0£¬0£¬0£¬1£¬0£¬0£¬0£¬0£¬1£¬0£¬0£¬0£¬0£¬1¡£¬
½«k=1£¬2£¬3£¬4£¬5£¬¡£¬Ò»Ò»´úÈë¼ÆËãµÃÊýÁÐxnΪ£º
1£¬2£¬3£¬4£¬5£¬1£¬2£¬3£¬4£¬5£¬1£¬2£¬3£¬4£¬5£¬¡
¼´xnµÄÖØ¸´¹æÂÉÊÇx5n+1=1£¬x5n+2=2£¬x5n+3=3£¬x5n+4=4£¬x5n=5£®n¡ÊN*£®
ÊýÁÐ{yn}Ϊ1£¬1£¬1£¬1£¬1£¬2£¬2£¬2£¬2£¬2£¬3£¬3£¬3£¬3£¬3£¬4£¬4£¬4£¬4£¬4£¬¡
¼´ynµÄÖØ¸´¹æÂÉÊÇy5n+k=n£¬0¡Ük£¼5£®
¡àÓÉÌâÒâ¿ÉÖªµÚ2016¿ÃÊ÷ÖÖÖ²µãµÄ×ø±êӦΪ£¨1£¬404£©£¬
¹Ê´ð°¸Îª£º£¨1£¬404£©£®
µãÆÀ ±¾Ìâ¸ø³öµÝÍÆÊ½£¬×ÅÖØ¿¼²éÁËÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪעÒâ´´ÐÂÌâµÄÁé»îÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖª$\frac{{S}_{4}}{{S}_{2}}$=3£¬Ôò2a2-a4µÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
10£®ÏÂÁк¯ÊýÖУ¬¼È²»ÊÇÆæº¯Êý£¬Ò²²»ÊÇżº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | y=x+sin2x | B£® | y=2x+$\frac{1}{{2}^{x}}$ | C£® | y=x2+sinx | D£® | y=x2-cosx |
7£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨sin¦È£¬1£©£¬$\overrightarrow{b}$=£¨2cos¦È£¬-1£©£¬ÇҦȡʣ¨0£¬¦Ð£©£¬Èô$\overrightarrow{a}¡Í\overrightarrow{b}$£¬Ôò¦È=£¨¡¡¡¡£©
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{3¦Ð}{4}$ |
9£®Ë«ÇúÏß$\frac{x^2}{{25-{m^2}}}$-$\frac{y^2}{{11+{m^2}}}$=1£¨0£¼m£¼5£©µÄ½¹¾àΪ£¨¡¡¡¡£©
| A£® | 6 | B£® | 12 | C£® | 36 | D£® | $2\sqrt{14-2{m^2}}$ |