题目内容

若不等式x2-ax+a<0的解集为空集,则实数a的取值范围是(  )
A、0≤a≤4
B、0<a<4
C、a<0或a>4
D、a≤0或a≥4
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:根据不等式x2-ax+a<0的解集为空集时,△≤0,求出a的取值范围.
解答: 解:∵不等式x2-ax+a<0的解集为空集,
∴△=(-a)2-4a≤0,
即a(a-4)≤0;
解得0≤a≤4,
∴实数a的取值范围是0≤a≤4.
故选:A.
点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网