题目内容

17.设$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$是两个不共线的向量,$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$-2k$\overrightarrow{{e}_{2}}$,若A,B,D共线,则k的值为(  )
A.-$\frac{9}{4}$B.-$\frac{4}{9}$C.-$\frac{3}{8}$D.不存在

分析 根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k的值不存在.

解答 解:$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$是两个不共线的向量,且$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$-2k$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow{BD}$=$\overrightarrow{CD}$-$\overrightarrow{CB}$=(3-k)$\overrightarrow{{e}_{1}}$-(2k+1)$\overrightarrow{{e}_{2}}$,
若A,B,D共线,
则$\overrightarrow{BD}$=λ$\overrightarrow{AB}$,
即(3-k)$\overrightarrow{{e}_{1}}$-(2k+1)$\overrightarrow{{e}_{2}}$=λ$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{2}}$,
∴$\left\{\begin{array}{l}{3-k=λ}\\{-(2k+1)=2λ}\end{array}\right.$,
解得k的值不存在.
故选:D.

点评 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网