题目内容

6.如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.
(Ⅰ)求证:PC⊥BC.
(Ⅱ)求二面角M-AC-B的大小.

分析 (Ⅰ)通过证明PA⊥BC,BC⊥AC.得到BC⊥面PAC即可
(Ⅱ)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,因为M是PB的中点,∠MHO为二面角M-AC-B的平面角.在Rt△MHO中,球tan∠MHO即可.

解答 解:(Ⅰ)证明:由PA⊥平面ABC,∴PA⊥BC,
又因为∠ACB=90°,即BC⊥AC.
∴BC⊥面PAC,∴PC⊥BC.
(Ⅱ)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,因为M是PB的中点,所以MO∥PA,
又因为PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.
设AC=2,则BC=2$\sqrt{3}$,MO=1,OH=$\sqrt{3}$,
在Rt△MHO中,tan∠MHO=$\frac{MO}{HO}=\frac{\sqrt{3}}{3}$.
二面角M-AC-B的大小为300

点评 本题考查了线线的位置关系,及二面角的求解,属于基础题,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网