题目内容

17.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为4$\sqrt{2}$;直线SB与AC所成角的余弦值为$\frac{\sqrt{2}}{4}$.

分析 由已知中的三视图可得SC⊥平面ABC,底面△ABC为等腰三角形,SC=4,△ABC中AC=4,AC边上的高为2$\sqrt{3}$,进而根据勾股定理得到答案.建立如图所示的坐标系,利用向量方法求解即可.

解答 解:由已知中的三视图可得SC⊥平面ABC,
且底面△ABC为等腰三角形,
在△ABC中AC=4,AC边上的高为2$\sqrt{3}$,
故BC=4,∠ACB=60°
在Rt△SBC中,由SC=4,可得SB=4$\sqrt{2}$,
建立如图所示的坐标系,则S(0,0,4),B(2$\sqrt{3}$,-2,0),A(0,-4,0),C(0,0,0),
∴$\overrightarrow{SB}$=(2$\sqrt{3}$,-2,-4),$\overrightarrow{AC}$=(0,4,0),
∴直线SB与AC所成角的余弦值为|$\frac{8}{\sqrt{12+4+16}•4}$|=$\frac{\sqrt{2}}{4}$.
故答案为4$\sqrt{2}$,$\frac{\sqrt{2}}{4}$.

点评 本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网