题目内容
8.已知sin2x+cos2x=$\frac{1}{5}$(x∈[0,$\frac{π}{2}$]),则tan2x+$\frac{3}{tan2x}$=$-\frac{43}{12}$.分析 把sin2x+cos2x=$\frac{1}{5}$平方求出,可得2sin2xcos2x<0,根据x的范围进一步判断2x为钝角,可得 sin2x-cos2x的值,解方程组求得 sin2x和cos2x,即可得到tan2x.即可求解表达式的值.
解答 解:∵sin2x+cos2x=$\frac{1}{5}$(x∈[0,$\frac{π}{2}$]),可得2x∈(0,π),
∴1+2sin2xcos2x=$\frac{1}{25}$,∴2sin2xcos2x=-$\frac{24}{25}$<0,∴2x为钝角.
∴sin2x-cos2x=$\sqrt{(sin2x+cos2x)^{2}-4sin2xcos2x}$=$\sqrt{\frac{1}{25}+\frac{48}{25}}$=$\frac{7}{5}$,
∴sin2x=$\frac{4}{5}$,cosx=-$\frac{3}{5}$,tan2x=$\frac{sin2x}{cos2x}$=-$\frac{4}{3}$,
tan2x+$\frac{3}{tan2x}$=$-\frac{4}{3}$+$\frac{3}{-\frac{4}{3}}$=$-\frac{43}{12}$.
故答案为:$-\frac{43}{12}$.
点评 本题主要考查同角三角函数的基本关系的应用,求出sin2x-cos2x的值,是解题的关键,属于中档题.
练习册系列答案
相关题目
16.函数f(x)=cos(x+$\frac{π}{3}$)对称轴是( )
| A. | {x|x=$\frac{π}{3}$+2kπ,k∈Z} | B. | {x|x=$\frac{π}{3}$+kπ,k∈Z} | C. | {x|x=-$\frac{π}{3}$+2kπ,k∈Z} | D. | {x|x=-$\frac{π}{3}$+kπ,k∈Z} |
3.直线l1经过点(0,k),(-$\frac{k}{2}$,0),直线l2经过点(0,$\frac{1}{2}$),(-$\frac{1}{4}$,0),则l1与l2的位置关系是( )
| A. | 平行 | B. | 相交 | C. | 重合 | D. | 平行或重合 |
13.已知直线ax+by-1=0在y轴上的截距为-1,且它的倾斜角是直线$\sqrt{3}$x-y-$\sqrt{3}$=0的倾斜角的2倍,则a,b的值分别为( )
| A. | $\sqrt{3}$,1 | B. | $\sqrt{3}$,-1 | C. | -$\sqrt{3}$,1 | D. | -$\sqrt{3}$,-1 |
16.下列函数中,同时满足①在(0,$\frac{π}{2}$)上是增函数,②为偶函数,③以π为最小正周期的函数是( )
| A. | f(x)=tanx | B. | f(x)=cos2x | C. | f(x)=|sin2x| | D. | f(x)=|sinx| |