题目内容

10.已知函数f(x)=3sin(${\frac{1}{2}x+\frac{π}{6}}$),
(1)若点P(1,-$\sqrt{3}$)在角α的终边上,求$f(2α-\frac{π}{3})$的值;
(2)若x∈[-$\frac{2π}{3}$,$\frac{4π}{3}$],求f(x)的值域.

分析 (1)由条件利用任意角的三角函数的定义求得sinα的值,可得f(2α-$\frac{π}{3}$)的值.
(2)利用正弦函数的定义域和值域,求得f(x)的值域.

解答 解:(1)∵函数f(x)=3sin(${\frac{1}{2}x+\frac{π}{6}}$),点$P(1,-\sqrt{3})$在角α的终边上,∴$sinα=\frac{{-\sqrt{3}}}{{\sqrt{{1^2}+{{(-\sqrt{3})}^2}}}}=-\frac{{\sqrt{3}}}{2}$,∴f(2α-$\frac{π}{3}$)=3sin(α-$\frac{π}{6}$+$\frac{π}{6}$)=3sinα=-$\frac{3\sqrt{3}}{2}$.
(2)∵$x∈[-\frac{2π}{3},\frac{4π}{3}]$,∴$\frac{1}{2}x+\frac{π}{6}∈[-\frac{π}{6},\frac{5π}{6}]$,∴$-\frac{1}{2}≤sin(\frac{1}{2}x+\frac{π}{6})≤1$,
∴$-\frac{3}{2}≤3sin(\frac{1}{2}x+\frac{π}{6})≤3$,即 函数的值域为$[-\frac{3}{2},3]$.

点评 本题主要考查任意角的三角函数的定义,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网