ÌâÄ¿ÄÚÈÝ
20£®£¨1£©È·¶¨x£¬y£¬p£¬qµÄÖµ£¬²¢²¹È«ÐëÂÊ·Ö²¼Ö±·½Í¼£»
£¨2£©Îª½øÒ»²½Á˽âʹÓÃ΢ÐŶÔ×Ô¼ºµÄÈÕ²»¹¤×÷ºÍÉú»îÊÇ·ñÓÐÓ°Ï죬´Ó¡°Î¢ÐÅ´ïÈË¡±ºÍ¡°·Ç΢ÐÅ´ïÈË¡±60ÈËÖÐÓ÷ֲã³éÑùµÄ·½·¨È·¶¨10ÈË£¬ÈôÐè´ÓÕâ10ÈËÖÐËæ»ýѡȡ3È˽øÐÐÎʾíµ÷²é£¬ÉèѡȡµÄ3ÈËÖС°Î¢ÐÅ´ïÈË¡±µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
| ʹÓÃ΢ÐÅʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£© | ƵÊý | ƵÂÊ |
| £¨0£¬0.5] | 3 | 0.05 |
| £¨0.5£¬1] | x | p |
| £¨1£¬1.5] | 9 | 0.15 |
| £¨1.5£¬2] | 15 | 0.25 |
| £¨2£¬2.5] | 18 | 0.30 |
| £¨2.5£¬3] | y | q |
| ºÏ¼Æ | 60 | 1.00 |
·ÖÎö £¨1£©¸ù¾Ý·Ö²¼Ö±·½Í¼¡¢ÆµÂÊ·Ö²¼±íµÄÐÔÖÊ£¬Áгö·½³Ì×飬ÄÜÈ·¶¨x£¬y£¬p£¬qµÄÖµ£¬²¢²¹È«ÐëÂÊ·Ö²¼Ö±·½Í¼£®
£¨2£©Ó÷ֲã³éÑùµÄ·½·¨£¬´ÓÖÐѡȡ10ÈË£¬ÔòÆäÖС°Íø¹º´ïÈË¡±ÓÐ4ÈË£¬¡°·ÇÍø¹º´ïÈË¡±ÓÐ6ÈË£¬¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð
½â£º£¨1£©¸ù¾ÝÌâÒ⣬ÓÐ
$\left\{\begin{array}{l}{3+x+9+15+18+y=60}\\{\frac{18+y}{3+x+9+15}=\frac{2}{3}}\end{array}\right.$£¬
½âµÃx=9£¬y=6£¬
¡àp=0.15£¬q=0.10£¬
²¹È«ÆµÂÊ·Ö²¼Í¼ÓÐÓÒͼËùʾ£®
£¨2£©Ó÷ֲã³éÑùµÄ·½·¨£¬´ÓÖÐѡȡ10ÈË£¬ÔòÆäÖС°Íø¹º´ïÈË¡±ÓÐ10¡Á$\frac{2}{5}$=4ÈË£¬¡°·ÇÍø¹º´ïÈË¡±ÓÐ10¡Á$\frac{3}{5}$=6ÈË£¬
¡à¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{{C}_{4}^{0}{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{1}{2}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{3}{10}$£¬
P£¨¦Î=3£©=$\frac{{C}_{4}^{3}{C}_{6}^{0}}{{C}_{10}^{3}}$=$\frac{1}{30}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{3}{10}$ | $\frac{1}{30}$ |
µãÆÀ ±¾Ì⿼²é¶Áͼ±í¡¢·Ö²ã³éÑù¡¢¸ÅÂÊ¡¢ÀëÉ¢ÐÍËæ»ú±äÁ¿·Ö²¼ÁÐÒÔ¼°ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËÓøÅÂÊͳ¼ÆÖªÊ¶½â¾ö¼òµ¥Êµ¼ÊÎÊÌâµÄÄÜÁ¦£¬Êý¾Ý´¦ÀíÄÜÁ¦£®
| A£® | £¨-¡Þ£¬-$\sqrt{3}$£©¡È£¨$\sqrt{3}$£¬+¡Þ£© | B£® | £¨-$\sqrt{3}$£¬-1£©¡È£¨1£¬$\sqrt{3}$£© | C£® | £¨-$\sqrt{3}$£¬$\sqrt{3}$£© | D£® | £¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£© |
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |