题目内容
10.在△ABC中,角A、B、C所对的边分别为a,b,c,已知a=1,b=$\sqrt{3}$,A=30°,B为锐角,那么角A:B:C的比值为( )| A. | 1:1:3 | B. | 1:2:3 | C. | 1:3:2 | D. | 1:4:1 |
分析 由已知及正弦定理可求sinB的值,结合B为锐角,可求B,利用三角形内角和定理可求C,即可得解.
解答 解:∵a=1,b=$\sqrt{3}$,A=30°,B为锐角,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×sin30°}{1}$=$\frac{\sqrt{3}}{2}$,可得:B=60°,C=180°-A-B=90°,
∴A:B:C=30°:60°:90°=1:2:3.
故选:B.
点评 本题主要考查了正弦定理,三角形内角和定理在解三角形中的应用,属于基础题.
练习册系列答案
相关题目
1.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{5}$,|$\overrightarrow{c}$|=1,若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是( )
| A. | [1,2] | B. | [2,4] | C. | [$\sqrt{7}$-1,$\sqrt{7}$+1] | D. | [$\sqrt{5}$-1,$\sqrt{5}$+1] |
5.《数学选修1-2》的知识结构图如图所示,则“直接证明与间接证明”的“上位”要素是( )

| A. | 推理与证明 | B. | 统计案例 | ||
| C. | 数系的扩充与复数的引入 | D. | 框图 |
2.某公司的组织结构图如图所示,其中技术服务部的直接领导是( )
| A. | 董事长 | B. | 监事会 | C. | 总经理 | D. | 总工程师 |
19.已知函数$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,无论t取何值,函数f(x)在R上总是不单调,则实数a的取值范围是( )
| A. | (-∞,1) | B. | $[{\frac{1}{4},+∞})$ | C. | $[{\frac{3}{4},+∞})$ | D. | $({-∞,\frac{3}{4}}]$ |