题目内容

4.已知函数f(x)=(x-a)|x|是定义在R上的奇函数,其中a∈R.
(1)求a的值;
(2)若不等式mx2+3m<f(x)对任意x∈[-3,3]成立,求实数m的取值范围.

分析 (1)直接由f(-x)+f(x)=0恒成立即可求得a值;
(2)把(1)中求得的a值代入f(x),可得f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤3}\\{-{x}^{2},-3≤x<0}\end{array}\right.$,当x∈[0,3]时,由mx2+3m<f(x),可得mx2+3m<x2恒成立,分离参数m,可得m<$\frac{{x}^{2}}{{x}^{2}+3}$恒成立,求出$\frac{{x}^{2}}{{x}^{2}+3}$得范围可得m的范围;同理求得x∈[-3,0)时m的范围,取交集可得使不等式mx2+3m<f(x)对任意x∈[-3,3]成立的实数m的取值范围.

解答 解:(1)∵f(x)=(x-a)|x|是定义在R上的奇函数,
∴有f(-x)+f(x)=0,即(-x-a)|-x|+(x-a)|x|=-2a|x|=0恒成立,得a=0;
(2)由(1)知a=0,∴f(x)=x|x|=$\left\{\begin{array}{l}{{x}^{2},0≤x≤3}\\{-{x}^{2},-3≤x<0}\end{array}\right.$,
当x∈[0,3]时,由mx2+3m<f(x),可得mx2+3m<x2恒成立,
即m<$\frac{{x}^{2}}{{x}^{2}+3}$恒成立,
当x=0时,$\frac{{x}^{2}}{{x}^{2}+3}=0$,当x∈(0,3]时,$\frac{{x}^{2}}{{x}^{2}+3}=\frac{1}{1+\frac{3}{{x}^{2}}}∈(0,\frac{3}{4}]$,
∴m<0;
当x∈[-3,0)时,由mx2+3m<f(x),可得mx2+3m<-x2恒成立,
即m<-$\frac{{x}^{2}}{{x}^{2}+3}$恒成立,当x∈[-3,0)时,-$\frac{{x}^{2}}{{x}^{2}+3}$=-$\frac{1}{1+\frac{3}{{x}^{2}}}∈[-\frac{3}{4},0)$,
∴m$<-\frac{3}{4}$.
综上,若不等式mx2+3m<f(x)对任意x∈[-3,3]成立,实数m的取值范围为(-∞,-$\frac{3}{4}$).

点评 本题考查函数奇偶性的应用,训练了恒成立问题的求解方法,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网