题目内容
15.已知扇形周长为40cm,面积为100cm2,则它的半径和圆心角分别为10cm和2rad.分析 设扇形的半径为r,弧长为l,圆心角为α,周长为c,面积为S,运用扇形的弧长公式和面积公式,列出方程,解出即可.
解答 解:设扇形的半径为r,弧长为l,圆心角为α,周长为c,面积为S,
则S=$\frac{1}{2}$lr=100,且c=l+2r=40,
解得,l=20,r=10,
则α=$\frac{l}{r}$=2,
则有半径为10cm,圆心角的弧度数为2rad.
故答案为:10cm,2rad.
点评 本题考查扇形的弧长公式和面积公式和运用,考查运算能力,属于基础题.
练习册系列答案
相关题目
3.集合A={x|0<x≤5,且x∈N*},在集合A中任取2个不同的数,则取出的2个数之差的绝对值不小于2的概率是( )
| A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
10.葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销y(单位:万元)的数据如表:
(1)求y关于x的线性回归直线方程;
(2)利用(1)中的回归直线方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}=\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\overline{bx}}\end{array}\right.$.
| 年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 |
| 年求学花销y | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(2)利用(1)中的回归直线方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}=\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\overline{bx}}\end{array}\right.$.
7.设i为虚数单位,复数z=1-i,则$\frac{2}{z}$+z=( )
| A. | 1 | B. | 2 | C. | -i | D. | 2i |