题目内容

18.已知函数f(x)=lnx-a2x2+ax(a∈R)在区间(1,+∞)上是减函数,则实数a的取值范围是(-∞,-$\frac{1}{2}$]∪[1,+∞).

分析 要使函数f(x)在区间(1,+∞)上是减函数,我们可以转化为f′(x)≤0在区间(1,+∞)上恒成立的问题来求解,然后利用二次函数的单调区间于对称轴的关系来解答也可达到目标.

解答 解:∵f(x)=lnx-a2x2+ax(a∈R),
∴f′(x)=$\frac{1}{x}$-2a2x+a=$\frac{-2{a}^{2}{x}^{2}+ax+1}{x}$,
由f(x)在区间(1,+∞)上是减函数,可得-2a2x2+ax+1≤0在区间(1,+∞)上恒成立
①当a=0时,1≤0不合题意,
②当a≠0时,可得$\left\{\begin{array}{l}{\frac{1}{4a}<1}\\{-2{a}^{2}+a+1≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>\frac{1}{4}或a<0}\\{-2{a}^{2}+a+1≤0}\end{array}\right.$,
解得a≤-$\frac{1}{2}$或a≥1,
故a的取值范围为(-∞,-$\frac{1}{2}$]∪[1,+∞),
故答案为:(-∞,-$\frac{1}{2}$]∪[1,+∞)

点评 本题以函数为载体,综合考查利用函数的导数来解决有关函数的单调性,考查已知函数的单调性的条件下怎样求解参数的范围问题,考查分类讨论,函数与方程,等数学思想与方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网