题目内容

设甲,乙两名射手各打10发子弹,每发子弹击中环数如下:
甲:10,6,7,10,8,9,9,10,5,10;
乙:8,7,9,10,9,8,7,9,8,9.
试问哪一名射手的技术较好?
考点:极差、方差与标准差
专题:计算题
分析:先做出两组数据的平均数,发现平均数相等,从平均数上不能区分两组数据的好坏,又求两组数据的方差,从稳定程度上来比较两个人的技术好坏,得到乙的水平较高.
解答: 解:先计算两名射手的平均环数:
.
x
=
1
10
(10+6+7+10+8+9+9+10+5+10)
=8.4
.
x
=
1
10
(8+7+9+10+9+8+7+9+8+9)
=8.4
再计算两名射手的标准差:
s=
1
10
(10-8.4)2+(6-8.4)2+(7-8.4)2+(10-8.4)2+(8-8.4)2+(9-8.4)2+(9-8.4)2+(10-8.4)2+(5-8.4)2+(10-8.4)2
=
1.884

s=
1
10
(8.4-8)2+(8.4-7)2+(8.4-9)2+(8.4-10)2+(8.4-9)2+(8.4-8)2+(8.4-7)2+(8.4-9)2+(8.4-8)2+(8.4-9)2
=
0.854

∴两名射手的平均值相等,但是乙的稳定性要好,
∴乙的水平比甲好.
点评:本题考查两组数据的平均数和方差,来判断两个人的射击水平好坏,本题是一个统计部分经常出现的一个问题,本题由于数据运算比较困难,是一个易错题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网