题目内容
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{
}的前n项和为Tn,求Tn的最小值.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{
| 1 |
| Sn |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出5a1+10d=70,a72=a2a22,由此求出首项和公差,从而能求出数列{an}的通项公式.
(Ⅱ)由(Ⅰ)得Sn =2n2+4n,从而得到
=
(
-
),由此利用裂项求和法能求出数列{
}的前n项和Tn的最小值.
(Ⅱ)由(Ⅰ)得Sn =2n2+4n,从而得到
| 1 |
| Sn |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| Sn |
解答:
(本小题满分14分)
解:(Ⅰ)∵数列{an}是等差数列,且S5=70,
∴5a1+10d=70,
又a2,a7,a22成等比数列,
∴a72=a2a22,∴(a1+6d)2=(a1+d)(a1+21d),
解得a1=6,d=4,或a1=14,d=0(舍),
∴an=4n+2.
(Ⅱ)由(Ⅰ)得Sn =2n2+4n,
∴
=
=
(
-
),
∴Tn =
(1-
+
-
+
-
+…+
-
+
-
)
=
-
(
+
).
∵Tn+1-Tn=
(
-
)>0,
∴数列{Tn}是递增数列,
∴Tn≥T1=
,
∴Tn的最小值为
.
解:(Ⅰ)∵数列{an}是等差数列,且S5=70,
∴5a1+10d=70,
又a2,a7,a22成等比数列,
∴a72=a2a22,∴(a1+6d)2=(a1+d)(a1+21d),
解得a1=6,d=4,或a1=14,d=0(舍),
∴an=4n+2.
(Ⅱ)由(Ⅰ)得Sn =2n2+4n,
∴
| 1 |
| Sn |
| 1 |
| 2n2+4n |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn =
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 3 |
| 8 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∵Tn+1-Tn=
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+3 |
∴数列{Tn}是递增数列,
∴Tn≥T1=
| 1 |
| 6 |
∴Tn的最小值为
| 1 |
| 6 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的最小值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目