题目内容

20.在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人.
(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;
(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.

分析 (1)出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;
(2)确定满足0≤x≤1,0≤y≤1点的区域,由条件$\left\{\begin{array}{l}{2x-y-1≤0}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.

解答 解:(1)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,
∴a和b至少有一人上台抽奖的概率为$\frac{9}{15}$=$\frac{3}{5}$;
(2)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,

由条件$\left\{\begin{array}{l}{2x-y-1≤0}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,得到的区域为图中的阴影部分
由2x-y-1=0,令y=0可得x=$\frac{1}{2}$,令y=1可得x=1
∴在x,y∈[0,1]时满足2x-y-1≤0的区域的面积为S=$\frac{1}{2}×(1+\frac{1}{2})×1$=$\frac{3}{4}$
∴该代表中奖的概率为$\frac{\frac{3}{4}}{1}$=$\frac{3}{4}$.

点评 本题考查概率与统计知识,考查分层抽样,考查概率的计算,确定概率的类型是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网