题目内容

17.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(1-x),x<1\\-{(x-2)^2}+2,x≥1\end{array}$,则关于x的方程f(|x|)=a(a∈R)的实根个数不可能为(  )
A.5个B.4个C.3个D.2个

分析 由题意可得求函数y=f(|x|)的图象和直线y=a的交点个数.作出函数y=f(|x|)的图象,平移直线y=a,即可得到所求交点个数,进而得到结论

解答 解:函数f(x)=$\left\{\begin{array}{l}{log_2}(1-x),x<1\\-{(x-2)^2}+2,x≥1\end{array}$,方程f(|x|)=a,(a∈R)实根个数,
即为函数y=f(|x|)和直线y=a的交点个数.
由y=f(|x|)为偶函数,可得图象关于y轴对称.
作出函数y=f(|x|)的图象,如图,
平移直线y=a,可得它们有2个、3个、4个交点.
不可能有5个交点,即不可能有5个实根,
故选:A.

点评 本题考查方程的实根个数问题的解法,注意运用转化思想和数形结合的方法,考查判断和作图能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网