题目内容
17.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(1-x),x<1\\-{(x-2)^2}+2,x≥1\end{array}$,则关于x的方程f(|x|)=a(a∈R)的实根个数不可能为( )| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
分析 由题意可得求函数y=f(|x|)的图象和直线y=a的交点个数.作出函数y=f(|x|)的图象,平移直线y=a,即可得到所求交点个数,进而得到结论
解答
解:函数f(x)=$\left\{\begin{array}{l}{log_2}(1-x),x<1\\-{(x-2)^2}+2,x≥1\end{array}$,方程f(|x|)=a,(a∈R)实根个数,
即为函数y=f(|x|)和直线y=a的交点个数.
由y=f(|x|)为偶函数,可得图象关于y轴对称.
作出函数y=f(|x|)的图象,如图,
平移直线y=a,可得它们有2个、3个、4个交点.
不可能有5个交点,即不可能有5个实根,
故选:A.
点评 本题考查方程的实根个数问题的解法,注意运用转化思想和数形结合的方法,考查判断和作图能力,属于中档题.
练习册系列答案
相关题目
8.已知|$\overrightarrow a$|=4cos$\frac{π}{8}$,|$\overrightarrow b$|=2sin$\frac{π}{8}$,$\overrightarrow a$•$\overrightarrow b$=-$\sqrt{2}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
5.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{3}{4}$x,且其右焦点为(5,0),则双曲线C的方程为( )
| A. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
12.执行如图所示程序框图所表示的算法,输出的结果是80,则判断框中应填入( )

| A. | n≤8 | B. | n≥8 | C. | n≤9 | D. | n≥9 |
9.设a=log0.32,b=ln2,c=5${\;}^{\frac{1}{2}}}$,则( )
| A. | a<b<c | B. | b<c<a | C. | c<a<b | D. | c<b<a |
6.
某几何体的三视图如图所示,其侧视图是一个等边三角形,则此几何体的体积是( )
| A. | 24$\sqrt{3}$ | B. | 8$\sqrt{3}$ | C. | 16$\sqrt{3}$ | D. | 16 |
7.当圆锥的侧面积和底面积的比值是2时,圆锥轴截面的顶角等于( )
| A. | 45° | B. | 60° | C. | 90° | D. | 120° |