题目内容
1.若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为$\frac{1}{3}$.分析 由甲与丙都不在第一天值班,得乙在第一天值班,由此能求出甲与丙都不在第一天值班的概率.
解答 解:随机安排甲乙丙三人在3天节日中值班,每人值班1天,
∵甲与丙都不在第一天值班,
∴乙在第一天值班,
∵第一天值班一共有3种不同安排,
∴甲与丙都不在第一天值班的概率p=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
练习册系列答案
相关题目
12.某同学用五点法画函数$f(x)=Asin(ωx+φ),(ω>0,|φ|<\frac{π}{2})$在某一个周期内的图象时,列表并填入了部分数据,如表:
(Ⅰ)请将表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)若函数f(x)的单调递增区间;
(Ⅲ)求f(x)在区间$[-\frac{π}{4}\;,\;\frac{π}{6}]$上的最小值.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| Asin(ωx+φ) | 0 | 3 | -3 | 0 |
(Ⅱ)若函数f(x)的单调递增区间;
(Ⅲ)求f(x)在区间$[-\frac{π}{4}\;,\;\frac{π}{6}]$上的最小值.
9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{2x+y-4≤0}\end{array}\right.$,若目标函数z=ax+y取得最大值时的最优解不唯一,则实数a的值为
( )
( )
| A. | -1 | B. | 2 | C. | -1或 2 | D. | 1或-2 |
16.在△ABC中,B=30°,C=45°,c=1,则b=( )
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |