题目内容
已知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m、n的值;若不存在,请说明理由.
(3)令cn=
,记数列{cn}的前n项和为Sn(n∈N*),证明:
≤Sn<
.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
| nan |
| (2n+1)•2n |
(3)令cn=
| (n+1)2+1 |
| n(n+1)an+2 |
| 5 |
| 16 |
| 1 |
| 2 |
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出数列{an}是公比为2的等比数列.由此能求出an=2n,n∈N*.
(2)bn=
=
,若b1,bm,bn成等比数列,则
=
.由此能求出当且仅当m=2,n=12.使得b1,bm,bn成等比数列.
(3)cn=
=
[
+
-
],由此利用裂项求和法能证明
≤Sn<
.
(2)bn=
| nan |
| (2n+1)•2n |
| n |
| 2n+1 |
| m2 |
| 4m2+4m+1 |
| n |
| 6n+3 |
(3)cn=
| (n+1)2+1 |
| n(n+1)•2n+2 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| n•2n |
| 1 |
| (n+1)•2n+1 |
| 5 |
| 16 |
| 1 |
| 2 |
解答:
(1)解:∵an+12=2an2+anan+1,∴(an+1+an)(2an-an+1)=0,
又an>0,∴2an-an+1=0,即2an=an+1,
∴数列{an}是公比为2的等比数列.
由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.
∴数列{an}的通项公式为an=2n,n∈N*.
(2)解:bn=
=
,若b1,bm,bn成等比数列,则(
)2=
(
),
即
=
.
由
=
,得
=
,
∴-2m2+4m+1>0,解得:1-
<m<1+
.
又m∈N*,且m>1,∴m=2,此时n=12.
故当且仅当m=2,n=12.使得b1,bm,bn成等比数列.
(3)证明:cn=
=
•
=
[
+
]
=
[
+
-
],
∴Sn=
(
+…+
)+
[(
-
)+(
-
)+…+(
-
]
=
•
+
[
-
]
=
[1-(
)n+1•
],
∵(
)n+1•
递减,
∴0<(
)n+1•
≤(
)1+1•
=
∴
≤
[1-(
)n+1•
]<
,∴
≤Sn<
.
又an>0,∴2an-an+1=0,即2an=an+1,
∴数列{an}是公比为2的等比数列.
由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.
∴数列{an}的通项公式为an=2n,n∈N*.
(2)解:bn=
| nan |
| (2n+1)•2n |
| n |
| 2n+1 |
| m |
| 2m+1 |
| 1 |
| 3 |
| n |
| 2n+1 |
即
| m2 |
| 4m2+4m+1 |
| n |
| 6n+3 |
由
| m2 |
| 4m2+4m+1 |
| n |
| 6n+3 |
| 3 |
| n |
| -2m2+4m+1 |
| m2 |
∴-2m2+4m+1>0,解得:1-
| ||
| 2 |
| ||
| 2 |
又m∈N*,且m>1,∴m=2,此时n=12.
故当且仅当m=2,n=12.使得b1,bm,bn成等比数列.
(3)证明:cn=
| (n+1)2+1 |
| n(n+1)•2n+2 |
| 1 |
| 2 |
| n2+2n+2 |
| n(n+1)•2n+1 |
=
| 1 |
| 2 |
| n2+n |
| n(n+1)•2n+1 |
| n+2 |
| n(n+1)•2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| n•2n |
| 1 |
| (n+1)•2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 1•2 |
| 1 |
| 2•22 |
| 1 |
| 2•22 |
| 1 |
| 3•23 |
| 1 |
| n•2n |
| 1 |
| (n+1)•2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| (n+1)•2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| n+2 |
| n+1 |
∵(
| 1 |
| 2 |
| n+2 |
| n+1 |
∴0<(
| 1 |
| 2 |
| n+2 |
| n+1 |
| 1 |
| 2 |
| 1+2 |
| 1+1 |
| 3 |
| 8 |
∴
| 5 |
| 16 |
| 1 |
| 2 |
| 1 |
| 2 |
| n+2 |
| n+1 |
| 1 |
| 2 |
| 5 |
| 16 |
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查等比数列的成立的条件的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目