题目内容

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
nan
(2n+1)•2n
,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m、n的值;若不存在,请说明理由.
(3)令cn=
(n+1)2+1
n(n+1)an+2
,记数列{cn}的前n项和为Sn(n∈N*),证明:
5
16
≤Sn
1
2
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出数列{an}是公比为2的等比数列.由此能求出an=2n,n∈N*
(2)bn=
nan
(2n+1)•2n
=
n
2n+1
,若b1,bm,bn成等比数列,则
m2
4m2+4m+1
=
n
6n+3
.由此能求出当且仅当m=2,n=12.使得b1,bm,bn成等比数列.
(3)cn=
(n+1)2+1
n(n+1)•2n+2
=
1
2
[
1
2n+1
+
1
n•2n
-
1
(n+1)•2n+1
],由此利用裂项求和法能证明
5
16
Sn
1
2
解答: (1)解:∵an+12=2an2+anan+1,∴(an+1+an)(2an-an+1)=0,
又an>0,∴2an-an+1=0,即2an=an+1
∴数列{an}是公比为2的等比数列.
由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.
∴数列{an}的通项公式为an=2n,n∈N*
(2)解:bn=
nan
(2n+1)•2n
=
n
2n+1
,若b1,bm,bn成等比数列,则(
m
2m+1
2=
1
3
(
n
2n+1
)

m2
4m2+4m+1
=
n
6n+3

m2
4m2+4m+1
=
n
6n+3
,得
3
n
=
-2m2+4m+1
m2

∴-2m2+4m+1>0,解得:1-
6
2
<m<1+
6
2

又m∈N*,且m>1,∴m=2,此时n=12.
故当且仅当m=2,n=12.使得b1,bm,bn成等比数列.
(3)证明:cn=
(n+1)2+1
n(n+1)•2n+2
=
1
2
n2+2n+2
n(n+1)•2n+1

=
1
2
[
n2+n
n(n+1)•2n+1
+
n+2
n(n+1)•2n+1
]

=
1
2
[
1
2n+1
+
1
n•2n
-
1
(n+1)•2n+1
],
Sn=
1
2
(
1
22
+…+
1
2n+1
)+
1
2
[(
1
1•2
-
1
2•22
)+(
1
2•22
-
1
3•23
)+…+
(
1
n•2n
-
1
(n+1)•2n+1
]
=
1
2
1
22
(1-
1
2n
)
1-
1
2
+
1
2
[
1
2
-
1
(n+1)•2n+1
]

=
1
2
[1-(
1
2
)n+1
n+2
n+1
]

∵(
1
2
n+1
n+2
n+1
递减,
∴0<(
1
2
n+1
n+2
n+1
(
1
2
)1+1
1+2
1+1
=
3
8

5
16
1
2
[1-(
1
2
)n+1
n+2
n+1
]<
1
2
,∴
5
16
Sn
1
2
点评:本题考查数列的通项公式的求法,考查等比数列的成立的条件的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网