题目内容
等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=分析:根据等差数列的前n项和的公式表示出S5和S3,然后把S5和S3的式子代入到6S5-5S3=5中合并后,利用等差数列的通项公式即可求出a4的值.
解答:解:∵Sn=na1+
n(n-1)d
∴S5=5a1+10d,S3=3a1+3d
∴6S5-5S3=30a1+60d-(15a1+15d)
=15a1+45d=15(a1+3d)=15a4=5
解得a4=
故答案为:
| 1 |
| 2 |
∴S5=5a1+10d,S3=3a1+3d
∴6S5-5S3=30a1+60d-(15a1+15d)
=15a1+45d=15(a1+3d)=15a4=5
解得a4=
| 1 |
| 3 |
故答案为:
| 1 |
| 3 |
点评:此题要求学生灵活运用等差数列的通项公式及前n项和的公式,是一道中档题.
练习册系列答案
相关题目
设等差数列{an}的前n项和为Sn,则a5+a6>0是S8≥S2的( )
| A、充分而不必要条件 | B、必要而不充分条件 | C、充分必要条件 | D、既不充分也不必要条件 |