题目内容

11.已知$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

分析 (1)由$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.利用二倍角公式即可出tanθ的值;
(2)根据tanθ的值求出sinθ和cosθ,利用二倍角和和与差的公式化简可求出$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

解答 解:(1)由tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
可得:$\sqrt{2}$tan2θ-tanθ-$\sqrt{2}$=0,
∵$θ∈(\frac{π}{4},\frac{π}{2})$.
∴tanθ=$\sqrt{2}$.
(2)由(1)可知tanθ=$\sqrt{2}$,即$\frac{sinθ}{cosθ}=\sqrt{2}$,sin2θ+cos2θ=1,
可得:sinθ=$\frac{\sqrt{6}}{3}$,cosθ=$\frac{\sqrt{3}}{3}$.
那么$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$=$\frac{cosθ-sinθ}{cosθ+sinθ}$=$\frac{\frac{\sqrt{3}}{3}-\frac{\sqrt{6}}{3}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{6}}{3}}$=2$\sqrt{2}-3$.

点评 本题考查了同角三角函数的关系式的计算和二倍角公式的运用.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网