题目内容
已知数列{an}中an=3n-2n,证明:
+
+…+
<
(用裂项法)
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:由已知得
=
=
•
<
,从而
+
+…+
<
+
•
+
•(
)2+…+
•(
)n-1=1+
+(
)2+…+(
)n-1,由此能证明
+
+…+
<
.
| ||
|
| 3n-1-2n-1 |
| 3n-2n |
| 1 |
| 3 |
3n-
| ||
| 3n-2n |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
解答:
证明:∵an=3n-2n,
∴
=
=1,
=
,
=
,
=
=
•
<
,
∴
+
+…+
<
+
•
+
•(
)2+…+
•(
)n-1
=1+
+(
)2+…+(
)n-1
=
=
(1-
)<
.
∴
+
+…+
<
+
•
+
•(
)2+…+
•(
)n-1
=1+
+(
)2+…+(
)n-1
=
=
(1-
)<
.
∴
+
+…+
<
.
∴
| 1 |
| a1 |
| 1 |
| 3-2 |
| 1 |
| an |
| 1 |
| 3n-2n |
| 1 |
| an-1 |
| 1 |
| 3n-1-2n-1 |
| ||
|
| 3n-1-2n-1 |
| 3n-2n |
=
| 1 |
| 3 |
3n-
| ||
| 3n-2n |
| 1 |
| 3 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| 3 |
=1+
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
1-
| ||
1-
|
=
| 3 |
| 2 |
| 1 |
| 3n |
| 3 |
| 2 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| 3 |
=1+
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
1-
| ||
1-
|
=
| 3 |
| 2 |
| 1 |
| 3n |
| 3 |
| 2 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
点评:本题考查不等式的证明,解题时要认真审题,注意等比数列的性质和裂项法的合理运用.
练习册系列答案
相关题目
若角θ满足条件cosθ<0,tanθ>0,则角θ所在象限应该是( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
已知不等式组
,则目标函数z=2x-y的最小值是( )
|
| A、8 | B、5 | C、4 | D、1+ln2 |