题目内容

已知数列{an}中an=3n-2n,证明:
1
a1
+
1
a2
+…+
1
an
3
2
(用裂项法)
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:由已知得
1
an
1
an-1
=
3n-1-2n-1
3n-2n
=
1
3
3n-
3
2
2n
3n-2n
1
3
,从而
1
a1
+
1
a2
+
…+
1
an
1
a1
+
1
a1
1
3
+
1
a1
•(
1
3
)2
+…+
1
a1
•(
1
3
)n-1
=1+
1
3
+(
1
3
2+…+(
1
3
n-1,由此能证明
1
a1
+
1
a2
+
…+
1
an
3
2
解答: 证明:∵an=3n-2n
1
a1
=
1
3-2
=1,
1
an
=
1
3n-2n

1
an-1 
=
1
3n-1-2n-1

1
an
1
an-1
=
3n-1-2n-1
3n-2n

=
1
3
3n-
3
2
2n
3n-2n
1
3

1
a1
+
1
a2
+
…+
1
an
1
a1
+
1
a1
1
3
+
1
a1
•(
1
3
)2
+…+
1
a1
•(
1
3
)n-1

=1+
1
3
+(
1
3
2+…+(
1
3
n-1
=
1-
1
3n
1-
1
3

=
3
2
(1-
1
3n
)
3
2

1
a1
+
1
a2
+
…+
1
an
1
a1
+
1
a1
1
3
+
1
a1
•(
1
3
)2
+…+
1
a1
•(
1
3
)n-1

=1+
1
3
+(
1
3
2+…+(
1
3
n-1
=
1-
1
3n
1-
1
3

=
3
2
(1-
1
3n
)
3
2

1
a1
+
1
a2
+
…+
1
an
3
2
点评:本题考查不等式的证明,解题时要认真审题,注意等比数列的性质和裂项法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网