题目内容

2.如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(  )
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

分析 由实际问题设出P与地面高度与时间t的关系,f(t)=Acos(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,从而得解.

解答 解:由题意,T=12,
∴ω=$\frac{π}{6}$,
设h(t)=Acos(ωt+φ)+B,(A>0,ω>0,φ∈[0,2π)),
则$\left\{\begin{array}{l}{A+B=18}\\{-A+B=2}\end{array}\right.$,
∴A=8,B=10,可得:h(t)=8cos($\frac{π}{6}$t+φ)+10,
∵P的初始位置在最低点,t=0时,有:h(t)=2,
即:8cosφ+10=2,解得:φ=2kπ+π,k∈Z,
∴φ=π,
∴h与t的函数关系为:h(t)=8cos($\frac{π}{6}$t+π)+10=-8cos$\frac{π}{6}$t+10,(t≥0),
故选:D.

点评 本题考查通过实际问题得到三角函数的性质,由性质求三角函数的解析式;考查y=Asin(ωx+φ)中参数的物理意义,注意三角函数的模型的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网