题目内容
13.函数$y=x+\frac{1}{4x}({x>0})$取得最小值时,x的值为( )| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
分析 由x>0代入基本不等式求出x+$\frac{1}{4x}$的范围,再验证等号成立的条件即可.
解答 解:∵x>0,∴x+$\frac{1}{4x}$≥2$\sqrt{x•\frac{1}{4x}}$=1,
当且仅当x=$\frac{1}{4x}$时取等号,此时x=$\frac{1}{2}$,
故选:B.
点评 本题考查了利用基本不等式求函数的最值,关键是抓一正二定三相等,三个条件缺一不可.
练习册系列答案
相关题目
12.设(1+x)n=a0+a1x+a2x2+…+anxn,若a1+a2+…+an=63,则展开式中系数最大项是( )
| A. | 20 | B. | 20x3 | C. | 105 | D. | 105x4 |
1.曲线的参数方程是$\left\{\begin{array}{l}{x=1-\frac{1}{t}}\\{y=1-{t}^{2}}\end{array}\right.$(t是参数,t≠0),它的普通方程是( )
| A. | (x-1)2(y-1)=1(y<1) | B. | y=$\frac{x(x-2)}{(x-1)^{2}}$(x≠1) | C. | y=$\frac{1}{1-{x}^{2}}$-1(y<1) | D. | y=$\frac{x}{1-{x}^{2}}$-1(y<1) |
8.设an=-n2+9n+10,则数列{an}前n项和最大时n的值为( )
| A. | 9 | B. | 10 | C. | 9或10 | D. | 12 |
5.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{e}$是同一平面内的三个向量,且|$\overrightarrow{e}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{a}$•$\overrightarrow{e}$=2,$\overrightarrow{b}$•$\overrightarrow{e}$=1,当|$\overrightarrow{a}$-$\overrightarrow{b}$|取得最小值时,$\overrightarrow{a}$与$\overrightarrow{e}$夹角的正切值等于( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{\sqrt{2}}{2}$ |
2.为研究女大学生体重和身高的关系,从某大学随机选取8名女大学生,其身高和体重数据如表:
利用最小二乘法求得身高预报体重的回归方程:$\widehat{y}$=0.849x-85.712,据此可求得R2≈0.64.下列说法正确的是( )
| 身高x/cm | 165 | 165 | 157 | 170 | 175 | 165 | 155 | 170 |
| 体重y/kg | 48 | 57 | 50 | 54 | 64 | 61 | 43 | 59 |
| A. | 两组变量的相关系数为0.64 | |
| B. | R2越趋近于1,表示两组变量的相关关系越强 | |
| C. | 女大学生的身高解释了64%的体重变化 | |
| D. | 女大学生的身高差异有64%是由体重引起的 |