题目内容
已知数列{bn}是公比大于1的等比数列,Sn数列{bn}的前n项和,满足S3=14,且b1+8,3b2,b3+6构成等差数列,数列{an}满足:a1=1,an=bn(
+
+…+
)(n≥2且n∈N*).
(1)求{bn}的通项公式bn;
(2)证明:
=
(n≥2且n∈N*);
(3)求证:(1+
)(1+
)…(1+
)<4(n∈N*).
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(1)求{bn}的通项公式bn;
(2)证明:
| an+1 |
| an+1 |
| bn |
| bn+1 |
(3)求证:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知等比数列的通项公式和前n项和公式及等差数列性质,求出首项和通项公式,由此能求出bn=2•2n-1=2n.
(2)由bn=2n,得
=(
)n,从而得an=
.由此能证明当n≥2时,
=
=
.
(3)(1+
)(1+
)…(1+
)=
×
×…×
=(
)n-2×(2n-1)=4-(
)n-2<4.由此能证明(1+
)(1+
)…(1+
)<4.
(2)由bn=2n,得
| 1 |
| bn |
| 1 |
| 2 |
|
| an+1 |
| an+1 |
| bn |
| bn+1 |
| 1 |
| 2 |
(3)(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| an+1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
解答:
(1)解:设数列{bn}的公比为q.
由S3=14,得b1+b2+b3=14;
由b1+8,3b2,b3+6成等差数列,
得6b2=b1+8+b3+6
即
,消去b1,得2q2-5q+2=0,
解得q=2或q=
,又因为q>1,
所以q=2.将q=2代入b1+b1q+b1q2=14,解得b1=2,
所以bn=2•2n-1=2n.
(2)证明:由bn=2n,得
=(
)n,
当n≥2时,
+
+…+
=
=1-(
)n-1,
当n≥2时,an=bn(
+
+…+
)=2n[1-(
)n-1]=2n-2,
所以an=
.
当n≥2时,因为
=
=
=
,
又
=
所以,当n≥2时,
=
.
(3)证明:(1+
)(1+
)…(1+
)=
×
×…×
=(1+
)×
×
×…×
×(an+1)=(2×
)×
×…×
×(2n-2+1)
=(
)n-2×(2n-1)=4-(
)n-2<4.
所以对n∈N*,(1+
)(1+
)…(1+
)<4.
由S3=14,得b1+b2+b3=14;
由b1+8,3b2,b3+6成等差数列,
得6b2=b1+8+b3+6
即
|
解得q=2或q=
| 1 |
| 2 |
所以q=2.将q=2代入b1+b1q+b1q2=14,解得b1=2,
所以bn=2•2n-1=2n.
(2)证明:由bn=2n,得
| 1 |
| bn |
| 1 |
| 2 |
当n≥2时,
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b n-1 |
| ||||
1-
|
| 1 |
| 2 |
当n≥2时,an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b n-1 |
| 1 |
| 2 |
所以an=
|
当n≥2时,因为
| an+1 |
| an+1 |
| 2n-2+1 |
| 2n+1-2 |
| 2n-1 |
| 2(2n-1) |
| 1 |
| 2 |
又
| bn |
| bn+1 |
| 1 |
| 2 |
所以,当n≥2时,
| an+1 |
| an+1 |
| bn |
| bn+1 |
(3)证明:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| an+1 |
| an |
=(1+
| 1 |
| a1 |
| 1 |
| a2 |
| a2+1 |
| a3 |
| an-1+1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=(
| 1 |
| 2 |
| 1 |
| 2 |
所以对n∈N*,(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
点评:本题考查数列的通项公式的求法,考查等式的证明和不等式的证明,解题时要认真审题,要熟练掌握等差数列和等比数列的性质.
练习册系列答案
相关题目
若实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,则下列结论正确的是( )
A、
| ||||
B、
| ||||
| C、ax+cy=1 | ||||
| D、ax+cy=2 |
设α、β∈[-
,
],且满足sinαcosβ+sinβcosα=1,则sinα+sinβ的取值范围是( )
| π |
| 2 |
| π |
| 2 |
A、[-
| ||||
B、[-1,
| ||||
C、[0,
| ||||
D、[1,
|