题目内容

设s,t为正整数,两直线的交点是(x1,y1),对于正整数n(n≥2),过点(0,t)和(xn-1,0)的直线与直线l2的交点记为(xn,yn).
(1)求数列{xn}通项公式;
(2)求数列{xnxn+1}的前n项和Sn
【答案】分析:(1)根据两直线的交点是(x1,y1),对于正整数n(n≥2),过点(0,t)和(xn-1,0)的直线与直线l2的交点记为(xn,yn),可得,取倒数,即可得到为等差数列,且首项为,公差为,从而可求数列{xn}通项公式;
(2)根据数列{xnxn+1}通项的特点,裂项求和,即可得到结论.
解答:解:(1)依题意,∵两直线的交点是(x1,y1),对于正整数n(n≥2),过点(0,t)和(xn-1,0)的直线与直线l2的交点记为(xn,yn),


为等差数列,且首项为,公差为


(2)
=
点评:本题考查直线的交点、数列通项的求法,考查数列的求和,综合性较强,确定数列的通项是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网