题目内容

已知数列{an}的前n项和Sn=
n(a1+an)
2

(1)求证:数列{an}为等差数列;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:点列、递归数列与数学归纳法
分析:(1)由数列递推式得到an,进一步得到an+1,作差后得答案;
(2)利用累加法求得bn,取倒数后由裂项相消法求得数列{
1
bn
}的前n项和Tn
解答: (1)证明:由Sn=
n(a1+an)
2

当n≥2时,Sn-1=
(n-1)(a1+an-1)
2

∴an=Sn-Sn-1=
n(a1+an)
2
-
(n-1)(a1+an-1)
2

同理有an+1=
(n+1)(a1+an+1)
2
-
n(a1+an)
2

从而an+1-an=
(n+1)(a1+an+1)
2
-n(a1+an)+
(n-1)(a1+an-1)
2

整理得an+1-an=an-an-1=a2-a1
从而{an}是等差数列;
(2)∵an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),
∴bn-bn-1=2n+1,
则b2-b1=2•2+1.
b3-b2=2•3+1.
b4-b3=2•4+1.

bn-bn-1=2n+1(n≥2).
∴bn-b1=2(2+3+4+…+n)+n-1.
bn=3+2•
(n+2)(n-1)
2
+n-1
=n(n+2).
1
bn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴数列{
1
bn
}的前n项和Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3n2+5n
4(n+1)(n+2)
点评:本题考查等差关系的确定,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网