题目内容
已知数列{an}的前n项和Sn=
.
(1)求证:数列{an}为等差数列;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
}的前n项和Tn.
| n(a1+an) |
| 2 |
(1)求证:数列{an}为等差数列;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
| 1 |
| bn |
考点:数列的求和,等差数列的通项公式
专题:点列、递归数列与数学归纳法
分析:(1)由数列递推式得到an,进一步得到an+1,作差后得答案;
(2)利用累加法求得bn,取倒数后由裂项相消法求得数列{
}的前n项和Tn.
(2)利用累加法求得bn,取倒数后由裂项相消法求得数列{
| 1 |
| bn |
解答:
(1)证明:由Sn=
,
当n≥2时,Sn-1=
,
∴an=Sn-Sn-1=
-
.
同理有an+1=
-
,
从而an+1-an=
-n(a1+an)+
,
整理得an+1-an=an-an-1=a2-a1.
从而{an}是等差数列;
(2)∵an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),
∴bn-bn-1=2n+1,
则b2-b1=2•2+1.
b3-b2=2•3+1.
b4-b3=2•4+1.
…
bn-bn-1=2n+1(n≥2).
∴bn-b1=2(2+3+4+…+n)+n-1.
∴bn=3+2•
+n-1=n(n+2).
=
=
(
-
).
∴数列{
}的前n项和Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)=
.
| n(a1+an) |
| 2 |
当n≥2时,Sn-1=
| (n-1)(a1+an-1) |
| 2 |
∴an=Sn-Sn-1=
| n(a1+an) |
| 2 |
| (n-1)(a1+an-1) |
| 2 |
同理有an+1=
| (n+1)(a1+an+1) |
| 2 |
| n(a1+an) |
| 2 |
从而an+1-an=
| (n+1)(a1+an+1) |
| 2 |
| (n-1)(a1+an-1) |
| 2 |
整理得an+1-an=an-an-1=a2-a1.
从而{an}是等差数列;
(2)∵an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),
∴bn-bn-1=2n+1,
则b2-b1=2•2+1.
b3-b2=2•3+1.
b4-b3=2•4+1.
…
bn-bn-1=2n+1(n≥2).
∴bn-b1=2(2+3+4+…+n)+n-1.
∴bn=3+2•
| (n+2)(n-1) |
| 2 |
| 1 |
| bn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列{
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3n2+5n |
| 4(n+1)(n+2) |
点评:本题考查等差关系的确定,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目