题目内容
若a、b、c∈R+,且a+b+c=1,求++的最大值.
解:(1·+1·+1·)2≤(12+12+12)(a+b+c)=3,即++的最大值为.
如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.
(1)证明:A1O⊥平面ABC;
(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m=(,-1),n=(cos A,sin A).若m⊥n,且acos C+ccos A=bsin B,则角C的大小为________.
已知直线l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(a∈R),则l1⊥l2的充要条件是a=________.
已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是∶1.
(1)求椭圆C的方程;
(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A, B,求证:直线AB的斜率为定值.
已知a>0,b>0,求证:
设x、y∈R,求的最小值.
已知对于任意非零实数m,不等式|2m-1|+|1-m|≥|m|(|x-1|-|2x+3|)恒成立,则实数x的取值范围为____________.
已知,求二阶方阵X,使MX=N.