题目内容


如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBCOAC中点.

(1)证明:A1O⊥平面ABC

(2)若E是线段A1B上一点,且满足VEBCC1·VABCA1B1C1,求A1E的长度.


解析: (1)证明:∵AA1A1CAC=2,且OAC中点,

A1OAC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABCACA1O⊂平面A1AC

A1O⊥平面ABC.

(2)∵VEBCC1VABCA1B1C1VA1BCC1,∴BEBA1,即A1EA1B.

连接OB,在Rt△A1OB中,A1OOBA1OBO=1,故A1B=2,则A1E的长度为.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网