题目内容
18.若f(x)=$\left\{\begin{array}{l}-2x-2,x∈({-∞,0})\\{x^2}-2x-1,x∈[0,+∞)\end{array}$,x1≤x2≤x3,且f(x1)=f(x2)=f(x3),则x1+x2+x3的取值的范围是( )| A. | $[{\frac{3}{2},2})$ | B. | $[{\frac{3}{2},2}]$ | C. | $({-\frac{1}{2},1}]$ | D. | $[{\frac{1}{2},2})$ |
分析 由二次函数的对称性可得x2+x3=2,即有x1+x2+x3=x1+2,再由图象解得-$\frac{1}{2}$≤x1<0,进而得到所求范围.
解答 解:由于f(x)=$\left\{\begin{array}{l}-2x-2,x∈({-∞,0})\\{x^2}-2x-1,x∈[0,+∞)\end{array}$,
当x<0时,y>-2;
当x≥0时,y=(x-1)2-2≥-2,
f(0)=f(2)=-1,
由x1<x2<x3,且f (x1)=f (x2)=f (x3),
则x2+x3=2,即有x1+x2+x3=x1+2,
当f(x1)=-1即-2x1-2=-1,解得x1=-$\frac{1}{2}$,
由-$\frac{1}{2}$≤x1<0,
可得$\frac{3}{2}$≤x1+2<2,
故选:A.
点评 本题考查分段函数的图象和应用,考查二次函数的对称性,考查数形结合的思想方法,属于中档题和易错题.
练习册系列答案
相关题目
9.若函数f(x)=x3-ax在x=2处取得极小值,则a=( )
| A. | 6 | B. | 12 | C. | 2 | D. | -2 |
8.根据上海高考改革方案,2017年,高中生可从思想政治、历史、地理、物理、化学、生命科学6门学业考试科目中选3门参加等级性考试,并且这3门学业考试科目等级考试成绩将这算,计入高考总分,上海37所本科高校,从目前公布的1096个专业(类)的选考科目老看,学生选考物理可以满足1070个专业选科要求,覆盖率97.63%;选考化学可以满足992个专业选科要求,覆盖率为90.51%;选考生命科学可以满足877个专业选科要求,覆盖率为80.02%,地理、历史、思想政治的覆盖率分别为64.05%、63.5%、62.14%,为了进一步调查学生选考的意向,某机构对本市两所学校各100名高一新生进行了选考调查,且规定从6门学业考试中每一位学生只能选择1门,结果如下:
(1)分别计算甲乙两校选考理科专业的频率,若将该频率视为概率,求从乙校高一新生中随机选取3人,其中恰有2人选考理科专业的概率;
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.
| 物理 | 化学 | 生命科学 | 政治 | 历史 | 地理 | |
| 甲校 | 35 | 20 | 15 | 7 | 8 | 15 |
| 乙校 | 30 | 14 | 16 | 11 | 14 | 15 |
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.