ÌâÄ¿ÄÚÈÝ
7£®ÎåÃûѧÉúÔÚijһ´Î¿¼ÊÔÖеÄÊýѧ³É¼¨£¨x·Ö£©ÓëÎïÀí³É¼¨£¨y·Ö£©¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬ÇÒÏßÐԻع鷽³ÌΪ$\widehat{y}=0.75x+10$£¬Êýѧƽ¾ù·Ö$\widehat{x}=100$·Ö£¬¼ÆËãºó·¢ÏÖ£¬ÎïÀíÒ»¸ö·ÖֵΪ2·ÖµÄÌâµÄ´ð°¸³ö´í£¬¸ü¸ÄǰÕâÎåÃûͬѧ´ËÌⶼûÓе÷֣¬¸ü¸ÄºóÕâÎåÃûͬѧ¶¼µÃ2·Ö£¬¼ÙÉè¸ü¸ÄºóÊýѧ³É¼¨£¨x·Ö£©ÓëÎïÀí³É¼¨£¨y·Ö£©»¹¾ßÓÐÏßÐÔÏà¹ØÐÔ£¬Ôò¸ü¸ÄºóµÄxÓëyµÄÏßÐԻع鷽³ÌΪy=0.75x+12£¨¸½£ºÏßÐԻع鷽³ÌΪ$\widehat{y}=\widehat{b}x+\widehat{a}$ÖУº$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\widehat{a}=\overline{y}-b\overline{x}$£©
·ÖÎö ÓÉÌâÒ⣬¸ü¸Äǰ$\overline{y}$=85£¬¸ü¸Äºó$\overline{y}$=87£¬¼´¿ÉÇó³ö¸ü¸ÄºóµÄxÓëyµÄÏßÐԻع鷽³Ì£®
½â´ð ½â£ºÓÉÌâÒ⣬¸ü¸Äǰ$\overline{y}$=85£¬¸ü¸Äºó$\overline{y}$=87£¬
¡à¸ü¸ÄºóµÄxÓëyµÄÏßÐԻع鷽³ÌΪy=0.75x+12£¬
¹Ê´ð°¸Îª£ºy=0.75x+12£®
µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®Èôf£¨x£©=$\left\{\begin{array}{l}-2x-2£¬x¡Ê£¨{-¡Þ£¬0}£©\\{x^2}-2x-1£¬x¡Ê[0£¬+¡Þ£©\end{array}$£¬x1¡Üx2¡Üx3£¬ÇÒf£¨x1£©=f£¨x2£©=f£¨x3£©£¬Ôòx1+x2+x3µÄȡֵµÄ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $[{\frac{3}{2}£¬2}£©$ | B£® | $[{\frac{3}{2}£¬2}]$ | C£® | $£¨{-\frac{1}{2}£¬1}]$ | D£® | $[{\frac{1}{2}£¬2}£©$ |
12£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨¦Ë+1£¬0£¬2£©£¬$\overrightarrow{b}$=£¨6£¬2¦Ì-1£¬$\frac{2}{¦Ë}$£©£¬Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôò¦Ë+¦Ì=£¨¡¡¡¡£©
| A£® | -$\frac{7}{10}$ | B£® | $\frac{7}{10}$ | C£® | -7 | D£® | 7 |
19£®ÏÂÁк¯ÊýÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | y=|x| | B£® | y=$\frac{1}{x}$ | C£® | y=x3 | D£® | y=2x |
17£®ÒÑÖª£¨¦Ø+x£©6=a0+a1x+a2x2+¡+a6x6£¬ÆäÖЦØ=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$$\overrightarrow{i}$£¬Ôò|a0|+|a1|+¡+|a6|µÈÓÚ£¨¡¡¡¡£©
| A£® | 1 | B£® | 26 | C£® | $\frac{{2}^{6}+1}{2}$ | D£® | $\frac{{2}^{6}-1}{2}$ |