题目内容

1.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,则|$\overline{a}$+2$\overrightarrow{b}$|=$\sqrt{19}$.

分析 利用数量积的定义和性质即可得出.

解答 解:平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,
则|$\overline{a}$+2$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+4|$\overrightarrow{b}$|2+4|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ=9+4×1+4×3×1×$\frac{1}{2}$=19,
∴|$\overline{a}$+2$\overrightarrow{b}$|=$\sqrt{19}$,
故答案为:$\sqrt{19}$.

点评 本题考查了数量积的定义和性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网