题目内容

利用ω=-
1
2
+
3
2
i求值:
(1)(ω+2ω22+(2ω+ω22
(2)ω2+
1
ω2

(3)类比i(i2=-1),探讨ω(ω3=1,ω为虚数)的性质,即求ωn(n∈R*)的值.
考点:复数代数形式的混合运算,类比推理
专题:数系的扩充和复数
分析:(1)利用复数的运算法则、共轭复数的定义及其ω3=1,即可得出.
(2)利用复数的运算法则、ω•
.
ω
=1,即可得出;
(3)由ω可得:ω2=
.
ω
,ω3=1,ω2+ω+1=0,ω
.
ω
=1,
.
ω
2
,即可得出ωn的性质.
解答: 解:(1)∵ω=-
1
2
+
3
2
i,∴ω2=-
1
2
-
3
2
i
=
.
ω
,ω3=1,ω2+ω+1=0,ω
.
ω
=1.
∴(ω+2ω22+(2ω+ω222+4ω3+4ω4+4ω2+4ω34=5ω2+5ω+8=3.
(2)ω2+
1
ω2
=ω2+
.
ω
2
=
.
ω
+
.
ω
2
=-1.
(3)由ω=-
1
2
+
3
2
i,可得:ω2=-
1
2
-
3
2
i
=
.
ω
,ω3=1,ω2+ω+1=0,ω
.
ω
=1,
.
ω
2

ωn=
1,n=3k
ω,n=3k-2
.
ω
,n=3k-1,(k∈Z)
点评:本题考查了复数的运算法则、共轭复数的定义及其ω的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网