题目内容

12.已知y=f(x+1)+2是定义域为R的奇函数,则f(e)+f(2-e)=-4.

分析 y=f(x+1)+2的图象关于原点(0,0)对称,则 y=f(x)图象关于(1,-2)对称,即可求出f(e)+f(2-e).

解答 解:y=f(x+1)+2的图象关于原点(0,0)对称,
则y=f(x)是由y=f(x+1)+2的图象向右平移1个单位、向下平移2个单位得到,图象关于(1,-2)对称,f(e)+f(2-e)=-4.
故答案为-4.

点评 本题考查函数的奇偶性、对称性,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网