ÌâÄ¿ÄÚÈÝ

8£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2}{x+1}$£¬µãOÎª×ø±êÔ­µã£¬µãAn£¨n£¬f£¨n£©£©£¨n¡ÊN*£©£¬ÏòÁ¿$\overrightarrow j=£¨0£¬1£©$£¬¦ÈnÊÇÏòÁ¿$\overrightarrow{O{A_n}}$Óë$\overrightarrow j$µÄ¼Ð½Ç£¬Ôò$\frac{{cos{¦È_1}}}{{sin{¦È_1}}}+\frac{{cos{¦È_2}}}{{sin{¦È_2}}}+\frac{{cos{¦È_1}}}{{sin{¦È_1}}}+¡­+\frac{{cos{¦È_{2016}}}}{{sin{¦È_{2016}}}}$=£¨¡¡¡¡£©
A£®$\frac{2015}{1008}$B£®$\frac{2017}{2016}$C£®$\frac{2016}{2017}$D£®$\frac{4032}{2017}$

·ÖÎö Çó³ö$\overrightarrow{O{A}_{n}}$£¬¸ù¾ÝÆ½ÃæÏòÁ¿µÄÊýÁ¿»ý¹«Ê½¼ÆËãcos¦Èn£¬¸ù¾Ýͬ½ÇÈý½Çº¯ÊýµÄ¹ØÏµµÃ³ösin¦Èn£¬»¯¼òµÃ$\frac{cos{¦È}_{n}}{sin{¦È}_{n}}$=$\frac{2}{n£¨n+1£©}$£¬È»ºóʹÓÃÁÑÏî·¨ÇóºÍ¼´¿É£®

½â´ð ½â£º$\overrightarrow{O{A}_{n}}$=£¨n£¬$\frac{2}{n+1}$£©£¬
¡àcos¦Èn=$\frac{\overrightarrow{O{A}_{n}}•\overrightarrow{i}}{|\overrightarrow{O{A}_{n}}||\overrightarrow{i}|}$=$\frac{\frac{2}{n+1}}{\sqrt{{n}^{2}+\frac{4}{£¨n+1£©^{2}}}}$=$\frac{2}{\sqrt{£¨n+1£©^{2}{n}^{2}+4}}$£¬
¡àsin¦Èn=$\sqrt{1-co{s}^{2}{¦È}_{n}}$=$\frac{n£¨n+1£©}{\sqrt{£¨n+1£©^{2}{n}^{2}+4}}$£¬
¡à$\frac{cos{¦È}_{n}}{sin{¦È}_{n}}$=$\frac{2}{n£¨n+1£©}$=2£¨$\frac{1}{n}-\frac{1}{n+1}$£©£¬
¡à$\frac{{cos{¦È_1}}}{{sin{¦È_1}}}+\frac{{cos{¦È_2}}}{{sin{¦È_2}}}+\frac{{cos{¦È_1}}}{{sin{¦È_1}}}+¡­+\frac{{cos{¦È_{2016}}}}{{sin{¦È_{2016}}}}$=2£¨1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+¡­+$\frac{1}{2016}-\frac{1}{2017}$£©
=2£¨1-$\frac{1}{2017}$£©=$\frac{4032}{2017}$£®
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ÊýÁÐÇóºÍ£¬¼ÆËãͨÏîÊǹؼü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø