题目内容
17.在平面直角坐标系xOy中,直线l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t为参数)}\right.$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程是$ρ=\frac{8cosθ}{1-cos2θ}$;(Ⅰ)若m=0,在曲线C上确定一点M,使得它到直线l的距离最小,并求出最小值;
(Ⅱ)设P(m,2)且m>1,直线l与曲线C相交于A,B两点,$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,求m的值.
分析 (Ⅰ)求出曲线C的普通方程,设直线方程为y=$\sqrt{3}x$+b,代入抛物线方程,可得3x2+(2$\sqrt{3}$b-4)x+b2=0,利用△=0,可得M的坐标,即可得出结论;
(Ⅱ)利用参数的几何意义,结合条件,即可求m的值.
解答 解:(Ⅰ)由曲线C的极坐标方程为$ρ=\frac{8cosθ}{1-cos2θ}$,即ρ(1-cos2θ)=8cosθ,化为ρ2•2sin2θ=8ρcosθ,∴y2=4x.
m=0,直线方程为y=$\sqrt{3}x$+2
设直线方程为y=$\sqrt{3}x$+b,代入抛物线方程,可得3x2+(2$\sqrt{3}$b-4)x+b2=0,
△=(2$\sqrt{3}$b-4)2-12b2=0,∴b=$\frac{\sqrt{3}}{3}$,x=$\frac{1}{3}$,y=$\frac{2\sqrt{3}}{3}$,
∴M($\frac{1}{3}$,$\frac{2\sqrt{3}}{3}$),到直线l的距离最小,最小值为$\frac{|2-\frac{\sqrt{3}}{3}|}{\sqrt{3+1}}$=1-$\frac{\sqrt{3}}{6}$;
(Ⅱ)直线l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t为参数)}\right.$,代入y2=4x.可得3t2+(4$\sqrt{3}$-4)t+4-4m=0
设A,B对应的参数分别为t1,t2,
则t1+t2=$\frac{4-4\sqrt{3}}{3}$,①t1t2=$\frac{4-4m}{3}$②,
∵$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,P(m,2)且m>1,
∴$\frac{\sqrt{(\frac{4-4\sqrt{3}}{3})^{2}-4•\frac{4-4m}{3}}}{|\frac{4-4m}{3}|}$=$\frac{{\sqrt{3}-1}}{2}$,
∴m=-5-3$\sqrt{3}$+$\sqrt{59+36\sqrt{3}}$.
点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与抛物线相切问题转化为一元二次的判别式满足的条件,考查了推理能力与计算能力,属于中档题.
| A. | (-1,0) | B. | (0,-1) | C. | (-$\frac{1}{16}$,0) | D. | (0,-$\frac{1}{16}$) |
(Ⅰ) 试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出是否有99.9%把握认为高中生的数学成绩与物理成绩有关系.
| 数学成绩好 | 数学成绩一般 | 总计 | |
| 物理成绩好 | |||
| 物理成绩一般 | |||
| 总计 |
附:
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | $3\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 2$\sqrt{2}$+1 | D. | $\frac{{3\sqrt{2}}}{2}$ |
| 生二胎 | 不生二胎 | 合计 | |
| 70后 | 30 | 15 | 45 |
| 80后 | 45 | 10 | 55 |
| 合计 | 75 | 25 | 100 |
参考数据:
| P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望.