题目内容

17.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{A{A_1}}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{BM}$可表示为(  )
A.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$C.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$

分析 利用向量的三角形法则、多边形法则、向量共线定理即可得出.

解答 解:$\overrightarrow{BM}$=$\overrightarrow{BA}$+$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}M}$=$-\overrightarrow{AB}$+$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}\overrightarrow{AC}$
=$-\overrightarrow{AB}$+$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}(\overrightarrow{BC}-\overrightarrow{BA})$=$-\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{BC}$+$\overrightarrow{A{A}_{1}}$
=-$\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$,
故选:A.

点评 本题考查了向量的三角形法则、多边形法则、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网