题目内容
7.已知椭圆C:x2+4y2=16,点M(2,1).(1)求椭圆C的焦点坐标和离心率;
(2)求通过M点且被这点平分的弦所在的直线方程.
分析 (1)将椭圆转化成标准方程:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$,可知椭圆的焦点在x轴上,a=4,b=2,则c=$\sqrt{{a}^{2}-{b}^{2}}$=2$\sqrt{3}$,焦点坐标为(2$\sqrt{3}$,0),(-2$\sqrt{3}$,0),离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;
(2)设A(x1,y1),B(x2,y2),由$\left\{\begin{array}{l}{\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{4}=1}\\{\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{4}=1}\end{array}\right.$,作差$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{16}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{4}$=0,由中点坐标公式及斜率公式可知:kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{4({y}_{1}+{y}_{2})}$=-$\frac{1}{2}$,利用直线的点斜式方程,即可求得直线AB的方程.
解答 解:(1)由椭圆C:x2+4y2=16,则$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$,可知椭圆的焦点在x轴上,
a=4,b=2,则c=$\sqrt{{a}^{2}-{b}^{2}}$=2$\sqrt{3}$,
∴椭圆的焦点坐标为(2$\sqrt{3}$,0),(-2$\sqrt{3}$,0),
离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;
(2)设过M点的直线与椭圆交于点A,B两点,A(x1,y1),B(x2,y2),
由题意得:$\left\{\begin{array}{l}{\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{4}=1}\\{\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{4}=1}\end{array}\right.$,
两式相减得:$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{16}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{4}$=0
由中点坐标公式,得$\frac{1}{2}$(x1+x2)=2,$\frac{1}{2}$(y1+y2)=1,
kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{4({y}_{1}+{y}_{2})}$=-$\frac{1}{2}$,
则所求直线方程为y-1=$\frac{1}{2}$(x-2),
∴x+2y-4=0.
点评 本题考查椭圆的标准方程的应用,考查直线与椭圆的位置关系,考查中点坐标公式,直线的斜率公式及点差法应用,考查计算能力,属于中档题.
| A. | (-∞,0) | B. | (-∞,1) | C. | $({\frac{1}{3},1})$ | D. | $({-\frac{1}{3},\frac{1}{3}})$ |
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
| A. | 44 | B. | 22 | C. | 18 | D. | 12 |