题目内容

18.已知数列{an}中,a1=5,且an=2an-1+2n-1(n≥2且n∈N*).
(1)证明:数列{$\frac{{a}_{n}-1}{{2}^{n}}$}为等差数列;
(2)求数列{an}的通项公式.

分析 (1)由an=2an-1+2n-1(n≥2且n∈N*),变形为an-1=2(an-1-1)+2n,$\frac{{a}_{n}-1}{{2}^{n}}$-$\frac{{a}_{n-1}-1}{{2}^{n-1}}$=1,即可证明.
(2)利用等差数列的通项公式即可得出.

解答 (1)证明:∵an=2an-1+2n-1(n≥2且n∈N*),
∴an-1=2(an-1-1)+2n
∴$\frac{{a}_{n}-1}{{2}^{n}}$-$\frac{{a}_{n-1}-1}{{2}^{n-1}}$=1,
∴数列{$\frac{{a}_{n}-1}{{2}^{n}}$}为等差数列,首项为2,公差为1.
(2)解:由(1)可得:$\frac{{a}_{n}-1}{{2}^{n}}$=2+(n-1)=n+1,
∴an=(n+1)•2n+1.

点评 本题考查了递推关系、等差数列的定义及其通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网