题目内容

4.计算:$\sum_{i=1}^{n}$[2(i-1)n+3]=$\frac{(-6+2i)}{5}[1-(i-1)^{n}]+3n$.

分析 利用数列的分组求和,然后再由等比数列的前n项和得答案.

解答 解:$\sum_{i=1}^{n}$[2(i-1)2+3]=2[(i-1)+(i-1)2+(i-1)3+…+(i-1)n]+3n
=$2•\frac{(i-1)[1-(i-1)^{n}]}{1-(i-1)}+3n$=$2•\frac{(i-1)(2+i)[1-(i-1)^{n}]}{(2-i)(2+i)}+3n$
=$\frac{(-6+2i)}{5}[1-(i-1)^{n}]+3n$.
故答案为:$\frac{(-6+2i)}{5}[1-(i-1)^{n}]+3n$.

点评 本题考查复数代数形式的混合运算,考查了等比数列前n项和在复数中的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网