题目内容
计算:
=
| lim |
| n→∞ |
| 22n+1-3n+1 |
| 22n+3n |
2
2
.分析:先把
等价转化为
,进而简化为
,由此能求出结果.
| lim |
| n→∞ |
| 22n+1-3n+1 |
| 22n+3n |
| lim |
| n→∞ |
| 2×4n-3×3n |
| 4n+3n |
| lim |
| n→∞ |
2-3×(
| ||
1+(
|
解答:解::
=
=
=2.
故答案为:2.
| lim |
| n→∞ |
| 22n+1-3n+1 |
| 22n+3n |
=
| lim |
| n→∞ |
| 2×4n-3×3n |
| 4n+3n |
=
| lim |
| n→∞ |
2-3×(
| ||
1+(
|
=2.
故答案为:2.
点评:本题考查数列的极限的求法,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目