题目内容
(2009•杨浦区一模)计算:
=
| lim |
| n→∞ |
| ||
| 1+2+3+…+n |
1
1
.分析:先由组合数计算公式,把
转化为
,进而简化为
,由此能求出结果.
| lim |
| n→∞ |
| ||
| 1+2+3+…+n |
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| n2-n |
| n2+n |
解答:解:
=
=
=1.
故答案为:1.
| lim |
| n→∞ |
| ||
| 1+2+3+…+n |
=
| lim |
| n→∞ |
| ||
|
=
| lim |
| n→∞ |
| n2-n |
| n2+n |
=1.
故答案为:1.
点评:本题考查极限的性质和应用,解题时要认真审题,仔细解答,注意组合数的合理运用.
练习册系列答案
相关题目