题目内容

(理)在△ABC中,C为钝角,设M=sin(A+B),N=sinA+sinB,P=cosA+cosB,则M,N,P的大小关系
 
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:利用两角和与差的正弦与正弦函数的性质易知M最小,再对N与P作差,利用辅助角公式及正弦函数的单调性即可得到答案.
解答: 解:∵M=sin(A+B)=sinAcosB+sinBcosA<sinA+sinB=N,
同理,M<P,即M最小;
又N-P=sinA+sinB-(cosA+cosB)
=(sinA-cosA)+(sinB-cosB)
=
2
sin(A-
π
4
)+
2
sin(B-
π
4

=
2
sin(B-
π
4
)-
2
sin(
π
4
-A);
设A<
π
4
,由C为钝角,知A+B<
π
2

π
4
π
4
-A>B-
π
4
>-
π
4

∴sin(
π
4
-A)>sin(B-
π
4
),
∴N-P<0,即N<P;
∴M,N,P的大小关系为M<N<P.
故答案为:M<N<P.
点评:本题考查两角和与差的正弦与正弦函数的性质,作差判断N与P的大小是难点,也是关键,考查运算求解能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网