题目内容
7.($x+2)(1-\frac{2}{x})^{4}$$(1-\frac{2}{x})^{4}$展开式的常数项为-6.分析 利用二项式定理展开即可得出.
解答 解:($x+2)(1-\frac{2}{x})^{4}$$(1-\frac{2}{x})^{4}$=(x+2)$(1-{∁}_{4}^{1}×\frac{2}{x}$+${∁}_{4}^{2}(-\frac{2}{x})^{2}$-${∁}_{4}^{3}(\frac{2}{x})^{3}$+$(\frac{2}{x})^{4})$,
其常数项为:2×1-4×2=-6.
故答案为:-6.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.直线x-2y+1=0与坐标轴所围成的封闭图形的面积是( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
12.已知复数z=(a2-4)+(a+2)i(a∈R),则“a=2”是“z为纯虚数”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充要条件 |