题目内容
某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人.
(1)请做出2×2列联表;
(2)能否在犯错概率不超过0.025的前提下认为喜欢玩电脑游戏与认为作业量的多少有关?
(1)请做出2×2列联表;
(2)能否在犯错概率不超过0.025的前提下认为喜欢玩电脑游戏与认为作业量的多少有关?
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)根据所给的数据,画出列联表;
(2)根据列联表中的数据,代入求观测值的公式,求出观测值,把观测值同临界值进行比较,看到有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系.
(2)根据列联表中的数据,代入求观测值的公式,求出观测值,把观测值同临界值进行比较,看到有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系.
解答:
解:(1)2×2列联表
(2)K2=
=5.059,P(K2>5.024)=0.025,
∴有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系.
| 认为作业多 | 认为作业不多 | 总数 | |
| 喜欢玩电脑游戏 | 18 | 9 | 27 |
| 不喜欢玩电脑游戏 | 8 | 15 | 23 |
| 总数 | 26 | 24 | 50 |
| 50(18×15-8×9)2 |
| 26×24×27×23 |
∴有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系.
点评:本题考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,数字运算的过程中数字比较多,不要出错.
练习册系列答案
相关题目