题目内容

4.已知动圆过定点(0,2),且在x轴上截得的弦长为4,记动圆圆心的轨迹为曲线C.
(1)求直线x-4y+2=0与曲线C围成的区域面积;
(2)点P在直线l:x-y-2=0上,点Q(0,1),过点P作曲线C的切线PA、PB,切点分别为A、B,证明:存在常数λ,使得|PQ|2=λ|QA|•|QB|,并求λ的值.

分析 (1)设动圆圆心的坐标为(x,y),由题意得|y|2+22=x2+(y-2)2,从而x2=4y,联立方程组$\left\{\begin{array}{l}{{x}^{2}=4y}\\{x-4y+2=0}\end{array}\right.$,求出$\left\{\begin{array}{l}{x=-1}\\{y=\frac{1}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,由此利用定积分能求了直线x-4y+2=0与曲线C围成的区域面积.
(2)设A(x1,y1),B(x2,y2),则由题意得切线PA的方程为y-y1=$\frac{{x}_{1}}{2}$(x-x1),切线PB的方程为y-y2=$\frac{{x}_{2}}{2}(x-{x}_{2})$,设P(x0,y0),则直线AB的方程为$y=\frac{{x}_{0}}{2}x-{y}_{0}$,联立方程组$\left\{\begin{array}{l}{y=\frac{{x}_{0}}{2}x-{y}_{0}}\\{{x}^{2}=4y}\end{array}\right.$,得x2-2x0x+4y0=0,从而x2-2x0x+4(x0-2)=0,由此利用韦达定理、弦长公式,结合已知条件能求出结果.

解答 解:(1)设动圆圆心的坐标为(x,y),
∵动圆过定点(0,2),且在x轴上截得的弦长为4,
∴由题意得|y|2+22=x2+(y-2)2
化简,得:x2=4y,
联立方程组$\left\{\begin{array}{l}{{x}^{2}=4y}\\{x-4y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=\frac{1}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
∴直线x-4y+2=0与曲线C围成的区域面积为:
${∫}_{-1}^{2}(\frac{1}{4}x+\frac{1}{2}-\frac{1}{4}{x}^{2})dx$
=(-$\frac{{x}^{3}}{12}$+$\frac{{x}^{2}}{8}$+$\frac{1}{2}x$)${|}_{-1}^{2}$=$\frac{9}{8}$.
(2)设A(x1,y1),B(x2,y2),则由题意得切线PA的方程为y-y1=$\frac{{x}_{1}}{2}$(x-x1),
切线PB的方程为y-y2=$\frac{{x}_{2}}{2}(x-{x}_{2})$,
设P(x0,y0),则$\left\{\begin{array}{l}{{y}_{0}-{y}_{1}=\frac{{x}_{1}}{2}({x}_{0}-{x}_{1})}\\{{y}_{0}-{y}_{2}=\frac{{x}_{2}}{2}({x}_{0}-{x}_{2})}\end{array}\right.$,
∴直线AB的方程为${y}_{0}-y=\frac{x}{2}({x}_{0}-x)$,
∴${y}_{0}-y=\frac{x}{2}•{x}_{0}-\frac{1}{2}•4y$,即$y=\frac{{x}_{0}}{2}x-{y}_{0}$,
联立方程组$\left\{\begin{array}{l}{y=\frac{{x}_{0}}{2}x-{y}_{0}}\\{{x}^{2}=4y}\end{array}\right.$,得x2-2x0x+4y0=0,
又y0=x0-2,
∴x2-2x0x+4(x0-2)=0,
∴x1+x2=2x0,x1x2=4x0-8,
|PQ|2=${{x}_{0}}^{2}+({y}_{0}-1)^{2}$=${{x}_{0}}^{2}$+(x0-3)2=2x02-6x0+9,
|QA|•|QB|=(y1+1)(y2+1)=y1y2+y1+y2+1
=$\frac{{{x}_{1}}^{2}}{4}•\frac{{{x}_{2}}^{2}}{4}$+$\frac{{{x}_{1}}^{2}}{4}+\frac{{{x}_{2}}^{2}}{4}$+1
=$\frac{({x}_{1}{x}_{2})^{2}}{16}+\frac{({x}_{1}+{x}_{2})-2{x}_{1}{x}_{2}}{4}$+1
=$\frac{(4{x}_{0}-8)^{2}}{16}+\frac{(2{x}_{0})^{2}-2(4{x}_{0}-8)}{4}$+1
=$2{{x}_{0}}^{2}-6{x}_{0}+9$,
∴$λ=\frac{|PQ{|}^{2}}{|QA|•|QB|}$=1.

点评 本题考查直线方程、抛物线、定积分、韦达定理、弦长公式等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网