题目内容
6.设i是虚数单位,复数z满足z•(1+2i)2=3+4i,则z在复平面内对应的点在( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算法则、几何意义、共轭复数的定义即可得出.
解答 解:z•(1+2i)2=3+4i,∴z•(-3+4i)=3+4i,∴-z•(3-4i)(3+4i)=(3+4i)(3+4i),
∴-25z=-7+24i,可得z=$\frac{7}{25}$-$\frac{24}{25}$i.
则z在复平面内对应的点$(\frac{7}{25},-\frac{24}{25})$在第四象限.
故选:D.
点评 本题考查了复数的运算法则、几何意义、共轭复数的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
17.已知a,b,c∈(0,1),且ab+bc+ac=1,则$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值为( )
| A. | $\frac{{3-\sqrt{3}}}{2}$ | B. | $\frac{{9-\sqrt{3}}}{2}$ | C. | $\frac{{6-\sqrt{3}}}{2}$ | D. | $\frac{{9+3\sqrt{3}}}{2}$ |
1.下列语句不是命题的是( )
| A. | -3>4 | B. | 0.3是整数 | C. | a>3 | D. | 4是3的约数 |
11.
《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图如图所示,则该几何体的表面积( )
| A. | $4+3\sqrt{3}$ | B. | $3+3\sqrt{3}$ | C. | $4+2\sqrt{3}$ | D. | $3+4\sqrt{3}$ |
18.下列求导结果正确的是( )
| A. | (a-x2)′=1-2x | B. | (2$\sqrt{{x}^{3}}$)′=3$\sqrt{x}$ | C. | (cos60°)′=-sin60° | D. | [ln(2x)]′=$\frac{1}{2x}$ |
15.我们知道,在长方形ABCD中,如果设AB=a,BC=b,那么长方形ABCD的外接圆的半径R满足4R2=a2+b2,类比上述结论,在长方体ABCD-A1B1C1D1中,如果设AB=a,AD=b,AA1=c,那么长方体ABCD-A1B1C1D1的外接球的半径R满足的关系式是( )
| A. | 4R2=a3+b3+c3 | B. | 8R2=a2+b2+c2 | C. | 8R3=a3+b3+c3 | D. | 4R2=a2+b2+c2 |