题目内容

6.集合A={x|3≤x≤9},集合B={x|m+1<x<2m+4},m∈R
(I)若m=1,求∁R(A∩B)
(II)若A∪B=A,求m的取值范围.

分析 (I)由m=1,求出集合B={x|2<x<6},则A∩B可求,进一步求出∁R(A∩B);
(II)若A∪B=A,则B⊆A,分类讨论,求m的取值范围.

解答 解:(I)若m=1,集合B={x|2<x<6},集合A={x|3≤x≤9},
则A∩B={x|3≤x≤9}∩{x|2<x<6}={x|3≤x<6},
∴CR(A∩B)={x|x<3或x≥6};
(II)若A∪B=A,则B⊆A.
B=∅,m+1≥2m+4,∴m≤-3;
B≠∅,$\left\{\begin{array}{l}{m+1<2m+4}\\{m+1≥3}\\{2m+4≤9}\end{array}\right.$,∴2≤m≤2.5,
综上所述,m≤-3或2≤m≤2.5.

点评 本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网