ÌâÄ¿ÄÚÈÝ
ÓÐÏÂÁÐÃüÌ⣺
£¨1£©f£¨x£©=sin£¨2x+
£©µÄͼÏó¹ØÓÚÖ±Ïßx=
¶Ô³Æ£»
£¨2£©º¯Êýf£¨x£©=4cos£¨2x+
£©µÄͼÏó¹ØÓڵ㣨-
¦Ð£¬0£©¶Ô³Æ£»
£¨3£©º¯Êýf£¨x£©=tan£¨2x-
£©µÄͼÏóµÄËùÓжԳÆÖÐÐÄΪ£¨
+
£¬0£©£¬k¡ÊZ£»
£¨4£©È纯Êýf£¨x£©=4cos£¨2x+
£©£¬ÔòÓÉf £¨x1£©=f £¨x2£©=0¿ÉµÃx1-x2±ØÊǦеÄÕûÊý±¶£»
£¨5£©º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊǦÕ=k¦Ð+
£¬k¡ÊZ£®
ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅÊÇ £®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£®£©
£¨1£©f£¨x£©=sin£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 12 |
£¨2£©º¯Êýf£¨x£©=4cos£¨2x+
| ¦Ð |
| 3 |
| 5 |
| 12 |
£¨3£©º¯Êýf£¨x£©=tan£¨2x-
| ¦Ð |
| 3 |
| k¦Ð |
| 2 |
| ¦Ð |
| 6 |
£¨4£©È纯Êýf£¨x£©=4cos£¨2x+
| ¦Ð |
| 3 |
£¨5£©º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊǦÕ=k¦Ð+
| ¦Ð |
| 2 |
ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺Èý½Çº¯ÊýµÄÇóÖµ,¼òÒ×Âß¼
·ÖÎö£º±¾Ì⿼²éµÄ֪ʶµãÊÇ£¬ÅжÏÃüÌâÕæ¼Ù£¬±È½Ï×ۺϵĿ¼²éÁËÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÎÒÃÇ¿ÉÒÔ¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖʶÔËĸö½áÂÛÖðÒ»½øÐÐÅжϣ¬¿ÉÒԵõ½ÕýÈ·µÄ½áÂÛ£®
½â´ð£º
½â£º¶ÔÓÚ£¨1£©£¬µ±x=
ʱ£¬f£¨x£©=sin£¨2¡Á
+
£©=1£¬È¡µÃ×î´óÖµ£¬¹Ê£¨1£©ÕýÈ·£»
¶ÔÓÚ£¨2£©£¬µ±x=-
¦Ðʱ£¬f£¨x£©=4cos£¨2¡Á-
¦Ð+
£©=0£¬¹Ê£¨2£©ÕýÈ·£»
¶ÔÓÚ£¨3£©£¬º¯Êýf£¨x£©=tan£¨2x-
£©µÄͼÏóµÄËùÓжԳÆÖÐÐÄΪ£¨
+
£¬0£©£¬k¡ÊZ£¬¹Ê£¨3£©´íÎó£»
¶ÔÓÚ£¨4£©£¬º¯Êýf£¨x£©=4cos£¨2x+
£©µÄÖÜÆÚΪ¦Ð£¬ÓÉf £¨x1£©=f £¨x2£©=0¿ÉµÃx1-x2±ØÊÇ
µÄÕûÊý±¶£¬¹Ê£¨4£©´íÎó£»
¶ÔÓÚ£¨5£©£¬º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊÇsin¦Õ=0£¬¼´¦Õ=k¦Ð£¬k¡ÊZ£¬¹Ê£¨5£©´íÎó£»
¹Ê´ð°¸Îª£º£¨1£©£¨2£©
| ¦Ð |
| 12 |
| ¦Ð |
| 12 |
| ¦Ð |
| 3 |
¶ÔÓÚ£¨2£©£¬µ±x=-
| 5 |
| 12 |
| 5 |
| 12 |
| ¦Ð |
| 3 |
¶ÔÓÚ£¨3£©£¬º¯Êýf£¨x£©=tan£¨2x-
| ¦Ð |
| 3 |
| k¦Ð |
| 4 |
| ¦Ð |
| 6 |
¶ÔÓÚ£¨4£©£¬º¯Êýf£¨x£©=4cos£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 2 |
¶ÔÓÚ£¨5£©£¬º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©ÎªÆæº¯ÊýµÄ³äÒªÌõ¼þÊÇsin¦Õ=0£¬¼´¦Õ=k¦Ð£¬k¡ÊZ£¬¹Ê£¨5£©´íÎó£»
¹Ê´ð°¸Îª£º£¨1£©£¨2£©
µãÆÀ£º±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄÐÔÖÊ£¬×öÌâʱӦÈÏÕæÉóÌ⣬±ÜÃâ´íÎó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¼¯ºÏA={x|x2-2x-3£¼0}£¬B={x|log2x£¼2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A¡¢£¨-1£¬4£© |
| B¡¢£¨-1£¬3£© |
| C¡¢£¨0£¬3£© |
| D¡¢£¨0£¬4£© |
ÒÑÖª¼¯ºÏA={1£¬2£¬3}£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢0¡ÊA | B¡¢6¡ÊA |
| C¡¢2∉A | D¡¢1¡ÊA |
| ¦Ð |
| 6 |
| CD |
| ¦Ð |
| 12 |
A¡¢¦Ø=
| ||||
B¡¢¦Ø=
| ||||
C¡¢¦Ø=2£¬¦Õ=
| ||||
D¡¢¦Ø=2£¬¦Õ=
|